ABSTRACT Title of dissertation: DEVELOPMENT OF A TIME-ACCURATE VISCOUS LAGRANGIAN VORTEX WAKE MODEL FOR WIND TURBINE APPLICATIONS
نویسنده
چکیده
Title of dissertation: DEVELOPMENT OF A TIME-ACCURATE VISCOUS LAGRANGIAN VORTEX WAKE MODEL FOR WIND TURBINE APPLICATIONS Sandeep Gupta, Doctor of Philosophy, 2006 Dissertation directed by: Minta Martin Professor J. Gordon Leishman, Department of Aerospace Engineering A second-order accurate model has been developed and validated for modeling the unsteady aerodynamics of a wind turbine. The free-vortex wake method consists of the Lagrangian description of the rotor flow field and viscous effects were incorporated using a viscous splitting approach. The wake geometry solution was then integrated with the rotor aerodynamics model in a consistent manner. The analysis was then used to predict the performance and airloads on a wind turbine in the upwind configuration under unyawed and yawed flow conditions. The present work has demonstrated the versatility and robustness of the free-vortex wake method for wind turbine applications. The understanding of the accuracy and the stability of the numerical method is very important in developing robust wake methodology. The accuracy of the straight-line segmentation method has been examined for a vortex ring and helical vortex, and it has been shown to be second-order accurate. However, a minimum discretization of ten degrees is shown to be required to obtain second-order accuracy and also keep the maximum error in the induced velocity field less than 10%. Linear and nonlinear numerical stability of various time-marching schemes were also examined, and a two-step backward differencing scheme was chosen. The overall numerical solution was demonstrated to converge with a second-order accuracy. The nonlinear unsteady aerodynamics of the blade section was modeled using the Leishman–Beddoes dynamic stall model modified for wind turbine applications. The numerical simulations captured the dynamics of the unsteady flow over the airfoil surface for both attached and stalled flow conditions. Validation of the numerical predictions of the aerodynamic force coefficients against measurements obtained for the S809 airfoil showed overall good agreement. It has been shown that with a proper representation of the static stall characteristics, this model can be used to predict dynamic stall for airfoil sections typical of those used for wind turbine applications. The unsteady airfoil model coupled with the blade model also adequately represented the three-dimensionality of the unsteady flow field for a parked blade, under both steady and unsteady flow conditions. The wake geometry solution integrated with the blade model was then used to predict the performance and airloads for a wind turbine tested under controlled conditions. It has been shown that it is important to accurately predict the transient wake aerodynamics to obtain accurate estimates of the unsteady airloads and power output. The skewed wake geometry behind an upwind wind turbine was successfully predicted in yawed flow conditions over a range of yaw angles and tip speed ratios. Measurements from the Phase VI of the NREL/NASA Ames wind tunnel test were used for validating the predictions of performance and airloads. The variation of the turbine thrust and the aerodynamic power output with wind speed was adequately predicted. Spanwise distributions of the aerodynamic coefficients were represented well, and encouraging agreement was obtained against the measured coefficients. The azimuthal variation of loads showed that the unsteady aerodynamic behavior of the the wind turbine was adequately represented, with some exceptions. DEVELOPMENT OF A TIME-ACCURATE VISCOUS LAGRANGIAN VORTEX WAKE MODEL FOR WIND TURBINE APPLICATIONS
منابع مشابه
Wind Turbine Wake Interactions - Characterization of Unsteady Blade Forces and the Role of Wake Interactions in Power Variability Control
Growing concerns about the environmental impact of fossil fuel energy and improvements in both the cost and performance of wind turbine technologies has spurred a sharp expansion in wind energy generation. However, both the increasing size of wind farms and the increased contribution of wind energy to the overall electricity generation market has created new challenges. As wind farms grow in si...
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. The pr...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملDynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensi...
متن کامل